Complexity of Bezout's Theorem VII: Distance Estimates in the Condition Metric
نویسندگان
چکیده
We study geometric properties of the solution variety for the problem of approximating solutions of systems of polynomial equations. We prove that given two pairs (fi, ζi), i = 1, 2, there exists a short path joining them such that the complexity of following the path is bounded by the logarithm of the condition number of the problems.
منابع مشابه
The Existence Theorem for Contractive Mappings on $wt$-distance in $b$-metric Spaces Endowed with a Graph and its Application
In this paper, we study the existence and uniqueness of fixed points for mappings with respect to a $wt$-distance in $b$-metric spaces endowed with a graph. Our results are significant, since we replace the condition of continuity of mapping with the condition of orbitally $G$-continuity of mapping and we consider $b$-metric spaces with graph instead of $b$-metric spaces, under which can be gen...
متن کاملComplexity of Bezout's Theorem VI: Geodesics in the Condition (Number) Metric
We introduce a new complexity measure of a path of (problems, solutions) pairs in terms of the length of the path in the condition metric which we define in the article. The measure gives an upper bound for the number of Newton steps sufficient to approximate the path discretely starting from one end and thus produce an approximate zero for the endpoint. This motivates the study of short paths ...
متن کاملFixed Points Theorems with respect to \fuzzy w-distance
In this paper, we shall introduce the fuzzyw-distance, then prove a common fixed point theorem with respectto fuzzy w-distance for two mappings under the condition ofweakly compatible in complete fuzzy metric spaces.
متن کاملCompleteness in Probabilistic Metric Spaces
The idea of probabilistic metric space was introduced by Menger and he showed that probabilistic metric spaces are generalizations of metric spaces. Thus, in this paper, we prove some of the important features and theorems and conclusions that are found in metric spaces. At the beginning of this paper, the distance distribution functions are proposed. These functions are essential in defining p...
متن کاملFixed point theorem for mappings satisfying contractive condition of integral type on intuitionistic fuzzy metric space
In this paper, we shall establish some fixed point theorems for mappings with the contractive condition of integrable type on complete intuitionistic fuzzy metric spaces $(X, M,N,*,lozenge)$. We also use Lebesgue-integrable mapping to obtain new results. Akram, Zafar, and Siddiqui introduced the notion of $A$-contraction mapping on metric space. In this paper by using the main idea of the work...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- Foundations of Computational Mathematics
دوره 9 شماره
صفحات -
تاریخ انتشار 2009